Quartz light guide rods utilize the principle of total internal reflection for transmitting light signals. When light travels from an optically dense medium to an optically less dense medium, if the angle of incidence is greater than or equal to the critical angle, the light will be totally reflected back into the original medium, thereby achieving light transmission. Within a quartz light guide rod, light undergoes continuous total internal reflection at the inner walls of the rod, thereby traveling along the length of the rod towards the target location.
diameter | length |
---|---|
10mm | 300mm |
10mm | 600mm |
12mm | 300mm |
12mm | 600mm |
14mm | 300mm |
14mm | 600mm |
15mm | 300mm |
15mm | 600mm |
15mm | 1000mm |
16mm | 300mm |
16mm | 600mm |
16mm | 1000mm |
16mm | 1200mm |
18mm | 300mm |
18mm | 600mm |
18mm | 1000mm |
18mm | 1200mm |
20mm | 300mm |
20mm | 600mm |
20mm | 1000mm |
20mm | 1200mm |
22mm | 300mm |
22mm | 600mm |
22mm | 1000mm |
22mm | 1200mm |
25mm | 300mm |
25mm | 600mm |
25mm | 1000mm |
25mm | 1200mm |
28mm | 300mm |
28mm | 600mm |
28mm | 1000mm |
28mm | 1200mm |
30mm | 300mm |
30mm | 600mm |
30mm | 1000mm |
30mm | 1200mm |
32mm | 300mm |
32mm | 600mm |
32mm | 1000mm |
32mm | 1200mm |
35mm | 300mm |
35mm | 600mm |
35mm | 1000mm |
35mm | 1200mm |
![](https://axquartz.com/wp-content/uploads/2024/12/棒子图示.webp)
- Payment method:
By T/T or prepayment,
It depends on the quantity of the order. - Delivery time:
According to the order quantity. - Shipping method:
By sea or by air,
It depends on the customer.
Remarks:
To confirm the order,
the following parameters are required:
① outer diameter ② length ③ quantity
Contenu de la propriété | Valeurs immobilières |
---|---|
SiO2 | 99.99% |
Densité | 2,2×10³ kg/cm³ |
Dureté | 5,5 - 6,5 Échelle de Mohs 570 KHN 100 |
Résistance à la traction | 4,8×10⁷ Pa (N/mm2) (7000 psi) |
Résistance à la compression | >1,1×10⁹ Pa (160 000 psi) |
Coefficient de dilatation thermique | 5,5×10-⁷ cm/cm-°C (20°C-320°C) |
Conductivité thermique | 1,4 W/m-°C |
Chaleur spécifique | 670 J/kg-°C |
Point d'adoucissement | 1730°C (3146°F) |
Point de recuit | 1210°C (2210°F) |
Point de contrainte | 1120°C (2048°F) |
Température de travail | 1200°C (2192°F) |
Résistivité électrique | 7×10⁷ ohm cm (350°C) |
Taille | Sur mesure |
Logo | Acceptation de logos personnalisés |
![](https://axquartz.com/wp-content/uploads/2024/12/石英棒车间.webp)
There are two primary methods for producing quartz rods: the continuous method and the flame fusion method (also known as the gas fusion method).
Continuous Method: In this method, quartz sand is fed from the top into a furnace, which comprises a metallic quartz crucible surrounded by electric heating elements. The quartz sand melts at high temperatures. The molten material then passes through a shaping orifice at the bottom of the crucible, producing rods, tubes, sheets, or other various specified product forms.
Flame Fusion Method: This method involves using hydrogen and oxygen to melt colorless quartz crystal. The molten material is formed into quartz glass through the melting and congealing of crystalline particles in the flame. The quartz glass is then removed from the flame through different methods and processed into quartz rods of the desired shape.
Résistance aux hautes températures
Quartz glass exhibits excellent high-temperature resistance, maintaining stability in high-temperature environments.
Low Thermal Expansion Coefficient
The thermal expansion coefficient of quartz glass is extremely low, ranging from 1/12 to 1/20 of that of ordinary glass, contributing to its stability under temperature variations.
Corrosion Resistance
Quartz glass is resistant to a variety of acids, bases, and salts, with the exception of hydrofluoric acid and hot phosphoric acid above 300 degrees Celsius.
High Light Transmission Rate
The light transmission rate can reach 99.9%, ensuring high transmittance of light signals during transmission.
Scénario d'application
Communication Field
In optical fiber communication systems, quartz light guide rods serve as a medium for transmitting light signals from the transmitter to the receiver, enabling high-speed and high-capacity data transmission.
They are also used in equipment such as lasers and optical amplifiers to enhance the performance and stability of communication systems.
Other Fields
In the biotechnology field, quartz light guide rods are used for fluorescence detection and analysis, allowing rapid and highly sensitive detection of biomolecules.
In laser processing, they are used for laser cutting and laser marking, characterized by high energy density, high precision, and high efficiency.
They are also used in the manufacturing of various optical instruments, such as microscopes, telescopes, and thermal imagers, transmitting light and changing its direction to achieve specific observational effects.
Quartz light guide rods exhibit excellent long-term stability in various environments. They possess a high degree of chemical stability, allowing them to maintain their performance and integrity in a wide range of chemical environments. Additionally, the thermal expansion coefficient of quartz glass is among the lowest of common industrial glasses, which means that it maintains good dimensional stability during temperature changes and is highly resistant to thermal shock.
Quartz light guide rods possess extremely high chemical stability and are nearly unreactive with most acidic and alkaline substances, except for hydrofluoric acid. This corrosion resistance makes them invaluable in environments where frequent contact with corrosive materials is common.
Quartz stirring rods offer superior high-temperature resistance and chemical stability compared to plastic stirring rods. Additionally, they possess high structural strength, are less prone to breakage, and have a long service life.
Questions fréquemment posées
Le verre de quartz est un matériau dur et cassant doté d'excellentes propriétés physiques et chimiques, d'une dureté mécanique extrêmement élevée, d'une bonne isolation électrique, d'une résistance aux températures élevées et à la corrosion, d'un retard faible et stable, d'une bonne transmission de la lumière, etc. Il est largement utilisé dans les semi-conducteurs, l'optique, l'électricité, la chimie, l'aérospatiale, l'automobile et d'autres domaines. Les matériaux durs et cassants sont difficiles à traiter, et de nombreux domaines ont un besoin urgent de procédés de coupe avec un faible effondrement des arêtes, une perte de matériau réduite, une faible rugosité de la section transversale et une large gamme d'épaisseurs de coupe. La méthode traditionnelle de découpe du verre de quartz est la découpe mécanique, c'est-à-dire la découpe à la meule. Les méthodes de découpe non traditionnelles comprennent la découpe au jet d'eau, la découpe par fil à décharge électrochimique, la découpe au laser en continu, etc. La découpe mécanique est peu coûteuse, mais le contact entre la meule et le matériau entraîne une usure importante de l'outil, et le matériau est facilement contaminé par l'outil. Le verre de quartz est sujet à l'effondrement des arêtes, aux microfissures et aux contraintes résiduelles, ce qui affecte la résistance et les performances du matériau ! Il est difficile de réaliser une découpe en courbe et nécessite un post-traitement, tel que le meulage et le polissage. La découpe au laser n'entre pas directement en contact avec le matériau, n'a pas de contrainte de contact et peut réaliser des découpes de courbes complexes. Le laser picoseconde présente les avantages suivants : petit diamètre du spot, haute précision, temps d'action court avec le matériau et petite zone d'action. Il convient au traitement des matériaux durs et fragiles.
。