Quartz glass plates are a high-transparency, high-temperature-resistant, and chemically stable material widely utilized in various fields, including optics, semiconductors, and fiber optic communications. Their low thermal expansion coefficient, excellent electrical insulation properties, and radiation resistance make them an indispensable material in high-tech applications.
Contenu de la propriété | Valeurs immobilières |
---|---|
SiO2 | 99.99% |
Densité | 2,2×10³ kg/cm³ |
Dureté | 5,5 - 6,5 Échelle de Mohs 570 KHN 100 |
Résistance à la traction | 4,8×10⁷ Pa (N/mm2) (7000 psi) |
Résistance à la compression | >1,1×10⁹ Pa (160 000 psi) |
Coefficient de dilatation thermique | 5,5×10-⁷ cm/cm-°C (20°C-320°C) |
Conductivité thermique | 1,4 W/m-°C |
Chaleur spécifique | 670 J/kg-°C |
Point d'adoucissement | 1730°C (3146°F) |
Point de recuit | 1210°C (2210°F) |
Point de contrainte | 1120°C (2048°F) |
Température de travail | 1200°C (2192°F) |
Résistivité électrique | 7×10⁷ ohm cm (350°C) |
Taille | Sur mesure |
Logo | Acceptation de logos personnalisés |
High Transparency
Quartz glass plates exhibit extremely high transparency, particularly across the ultraviolet to infrared spectral range. This makes them invaluable in optical applications, such as the fabrication of lenses, optical fibers, and optical windows.
Résistance aux hautes températures
Quartz glass plates can withstand exceptionally high temperatures, with continuous operating temperatures up to 1100°C and short-term tolerance up to 1250°C. This makes them ideal for high-temperature environments, such as in semiconductor manufacturing and as viewports in high-temperature furnaces.
Chemical Stability
Quartz glass plates have excellent resistance to most chemicals, particularly acids. With the exception of hydrofluoric acid, they demonstrate near-inertness to almost all acids, making them highly sought after in chemical laboratories and industrial applications.
Low Thermal Expansion Coefficient
Quartz glass plates have a low thermal expansion coefficient, meaning their dimensions change very little with temperature variations. This is crucial for precision instruments and high-temperature equipment that require precise dimensional control, ensuring stability and reliability under fluctuating temperatures.
Scénario d'application
Industrie des semi-conducteurs
Quartz glass plates play a crucial role in the semiconductor supply chain, widely used in single-crystal silicon production and wafer manufacturing processes. Various quartz components and instruments are essential in cleaning, oxidation, photolithography, etching, and diffusion steps. For example, quartz crucibles are indispensable containers in the semiconductor industry, while high-purity quartz products such as quartz glass plates, quartz rings, and quartz boats are also used in these processes.
Fiber Optic Communication Industry
Quartz glass is the primary raw material in optical fiber manufacturing, with high-purity quartz glass accounting for more than 95% of the composition of optical fiber preforms. Significant amounts of quartz glass materials, such as holding rods and quartz cups, are consumed during optical fiber production processes like preform fabrication and fiber drawing.
Optics Field
Due to its excellent optical properties, quartz glass plates are used in the manufacturing of high-end optical lenses, prisms, and as substrate materials for TFT-LCD high-definition displays and IC photomasks. They ensure light transmission within the 185-3500 micrometer wavelength range, providing a clear visual experience.
Aerospace Field
Quartz glass plates, with their low density, high compressive strength, and good optical performance, are widely used in the aerospace sector for satellites and spacecraft. Radiation-resistant quartz glass can effectively control the attitude of spacecraft, and high-strength, radiation-resistant glass cover slips provide effective protection for the solar cell energy systems of spacecraft.
In semiconductor manufacturing, quartz glass plates are used to fabricate various components and containers, including quartz crucibles, quartz boats, and quartz rings. These are essential in processes such as cleaning, oxidation, photolithography, etching, and diffusion.
Quartz glass plates exhibit extremely high chemical stability, showing inertness to nearly all acids, with the exception of hydrofluoric acid. This property makes them highly sought after in chemical laboratories and industrial applications.
A low thermal expansion coefficient means that quartz glass plates exhibit minimal dimensional changes with temperature variations. This is crucial for precision instruments and high-temperature equipment that require precise dimensional control, ensuring stability and reliability even under fluctuating temperatures.
Questions fréquemment posées
Le verre de quartz est un matériau dur et cassant doté d'excellentes propriétés physiques et chimiques, d'une dureté mécanique extrêmement élevée, d'une bonne isolation électrique, d'une résistance aux températures élevées et à la corrosion, d'un retard faible et stable, d'une bonne transmission de la lumière, etc. Il est largement utilisé dans les semi-conducteurs, l'optique, l'électricité, la chimie, l'aérospatiale, l'automobile et d'autres domaines. Les matériaux durs et cassants sont difficiles à traiter, et de nombreux domaines ont un besoin urgent de procédés de coupe avec un faible effondrement des arêtes, une perte de matériau réduite, une faible rugosité de la section transversale et une large gamme d'épaisseurs de coupe. La méthode traditionnelle de découpe du verre de quartz est la découpe mécanique, c'est-à-dire la découpe à la meule. Les méthodes de découpe non traditionnelles comprennent la découpe au jet d'eau, la découpe par fil à décharge électrochimique, la découpe au laser en continu, etc. La découpe mécanique est peu coûteuse, mais le contact entre la meule et le matériau entraîne une usure importante de l'outil, et le matériau est facilement contaminé par l'outil. Le verre de quartz est sujet à l'effondrement des arêtes, aux microfissures et aux contraintes résiduelles, ce qui affecte la résistance et les performances du matériau ! Il est difficile de réaliser une découpe en courbe et nécessite un post-traitement, tel que le meulage et le polissage. La découpe au laser n'entre pas directement en contact avec le matériau, n'a pas de contrainte de contact et peut réaliser des découpes de courbes complexes. Le laser picoseconde présente les avantages suivants : petit diamètre du spot, haute précision, temps d'action court avec le matériau et petite zone d'action. Il convient au traitement des matériaux durs et fragiles.
。