Quartz XRD sample holders are used to load quartz samples for X-ray diffraction experiments. During sample preparation, it is essential to ensure that the sample powder is dry, has uniform particle size, and has a flat, tightly packed surface to obtain accurate diffraction data. When using the sample holder, the sample should be placed at the center of the stage, and the sample surface should be tangent to the focusing circle to avoid height errors affecting the test results.
Contenu de la propriété | Valeurs immobilières |
---|---|
SiO2 | 99.99% |
Densité | 2,2×10³ kg/cm³ |
Dureté | 5,5 - 6,5 Échelle de Mohs 570 KHN 100 |
Résistance à la traction | 4,8×10⁷ Pa (N/mm2) (7000 psi) |
Résistance à la compression | >1,1×10⁹ Pa (160 000 psi) |
Coefficient de dilatation thermique | 5,5×10-⁷ cm/cm-°C (20°C-320°C) |
Conductivité thermique | 1,4 W/m-°C |
Chaleur spécifique | 670 J/kg-°C |
Point d'adoucissement | 1730°C (3146°F) |
Point de recuit | 1210°C (2210°F) |
Point de contrainte | 1120°C (2048°F) |
Température de travail | 1200°C (2192°F) |
Résistivité électrique | 7×10⁷ ohm cm (350°C) |
Taille | Sur mesure |
Logo | Acceptation de logos personnalisés |
Résistance aux hautes températures
Quartz XRD sample holders are made of quartz glass, which has a softening point of approximately 1730°C. They can be used for extended periods at 1100°C and for short durations at temperatures up to 1450°C.
Chemical Stability
Quartz glass is highly resistant to chemical reactions with most acids. Its acid resistance is approximately 30 times higher than ceramics and 150 times higher than stainless steel. It exhibits exceptional chemical stability, particularly at high temperatures.
Low Thermal Expansion Coefficient
Quartz glass has an extremely low coefficient of thermal expansion, allowing it to withstand rapid temperature changes without fracturing. This provides excellent thermal stability.
Good Optical Transmission
Quartz glass exhibits excellent optical transmission across the entire spectrum from ultraviolet to infrared. Its visible light transmission is greater than 93%, and in the ultraviolet spectral region, its transmission can exceed 90%.
Scénario d'application
Crystal Structure Analysis in Materials Science
Quartz XRD sample holders are crucial in various fields of materials science, especially for crystal structure analysis. By analyzing the diffraction patterns produced from the interaction of X-rays with a material, vital information about the material’s crystal structure, grain size, phase composition, and stress state can be obtained.
Phase Composition and Multi-Phase Material Analysis
Quartz XRD sample holders are used to identify components and their relative proportions within polycrystalline materials such as alloys, ceramics, and composites. They are also important for investigating the local structural characteristics of amorphous materials, such as glass and amorphous alloys.
Phase Transition and Thermal Stability Studies
Quartz XRD sample holders enable the study of phase transition behavior in materials under varying temperature or pressure conditions. By heating or cooling samples and monitoring their diffraction patterns, researchers can determine whether phase transitions occur under specific conditions.
Critical Material Applications in Semiconductor Manufacturing
In the semiconductor industry, quartz XRD sample holders play an important role because of their high-temperature and corrosion-resistant properties. They are used in high-temperature devices, such as furnace tubes and glass boats for diffusion and oxidation processes, and in low-temperature devices, such as quartz rings for etching processes.
When using quartz XRD sample holders for experiments, the following points should be observed:
Ensure the sample holder is clean and free of dust to avoid contaminating the sample and affecting diffraction results.
The sample should be evenly distributed in the sample holder to obtain optimal diffraction signals.
Avoid exposing the sample holder to drastic temperature changes to prevent the quartz glass from cracking due to excessive temperature differentials.
When using the sample holder at high temperatures or under specific conditions, follow the manufacturer’s guidelines and safety regulations.
The following steps can be used to clean and maintain quartz XRD sample holders:
Gently remove dust and residue from the surface of the sample holder using a soft cloth or brush.
For stubborn stains, use a mild detergent and water for cleaning, but ensure thorough rinsing and drying to avoid any chemical residue.
Regularly check the sample holder for cracks or damage, particularly after high-temperature or high-pressure experiments.
Store in a dry, clean place, away from direct sunlight and humid environments.
The lifespan of a quartz XRD sample holder depends on various factors, including:
Usage frequency and experimental conditions; frequent use or use under extreme conditions may shorten its lifespan.
Maintenance and cleanliness of the sample holder; good maintenance can prolong its lifespan.
Material and manufacturing quality of the sample holder; high-quality quartz glass is typically more durable.
Questions fréquemment posées
Le verre de quartz est un matériau dur et cassant doté d'excellentes propriétés physiques et chimiques, d'une dureté mécanique extrêmement élevée, d'une bonne isolation électrique, d'une résistance aux températures élevées et à la corrosion, d'un retard faible et stable, d'une bonne transmission de la lumière, etc. Il est largement utilisé dans les semi-conducteurs, l'optique, l'électricité, la chimie, l'aérospatiale, l'automobile et d'autres domaines. Les matériaux durs et cassants sont difficiles à traiter, et de nombreux domaines ont un besoin urgent de procédés de coupe avec un faible effondrement des arêtes, une perte de matériau réduite, une faible rugosité de la section transversale et une large gamme d'épaisseurs de coupe. La méthode traditionnelle de découpe du verre de quartz est la découpe mécanique, c'est-à-dire la découpe à la meule. Les méthodes de découpe non traditionnelles comprennent la découpe au jet d'eau, la découpe par fil à décharge électrochimique, la découpe au laser en continu, etc. La découpe mécanique est peu coûteuse, mais le contact entre la meule et le matériau entraîne une usure importante de l'outil, et le matériau est facilement contaminé par l'outil. Le verre de quartz est sujet à l'effondrement des arêtes, aux microfissures et aux contraintes résiduelles, ce qui affecte la résistance et les performances du matériau ! Il est difficile de réaliser une découpe en courbe et nécessite un post-traitement, tel que le meulage et le polissage. La découpe au laser n'entre pas directement en contact avec le matériau, n'a pas de contrainte de contact et peut réaliser des découpes de courbes complexes. Le laser picoseconde présente les avantages suivants : petit diamètre du spot, haute précision, temps d'action court avec le matériau et petite zone d'action. Il convient au traitement des matériaux durs et fragiles.
。