Large-size quartz glass plates, characterized by their exceptional high-temperature resistance, corrosion resistance, and optical properties, are widely utilized in numerous fields such as semiconductors, optics, and high-temperature manufacturing. These plates are typically produced through a continuous fusion method and are available in various sizes and specifications to meet diverse industrial needs.
物件内容 | 資産価値 |
---|---|
二酸化ケイ素 | 99.99% |
密度 | 2.2×10³ kg/cm³ |
硬度 | 5.5 - 6.5 モース硬度 570 KHN 100 |
引張強度 | 4.8×10⁷ Pa (N/mm2) (7000 psi) |
圧縮強度 | >1.1×10⁹Pa (160,000 psi) |
熱膨張係数 | 5.5×10-⁷cm/cm-°C (20°C-320°C) |
熱伝導率 | 1.4 W/m-°C |
比熱 | 670 J/kg-°C |
軟化点 | 1730度C(3146度F) |
アニーリングポイント | 1210度C(2210度F) |
ストレイン・ポイント | 1120度C(2048度F) |
作業温度 | 1200°C |
電気抵抗率 | 7×10⁷Ωcm (350°C) |
サイズ | カスタマイズ |
ロゴ | カスタマイズされたロゴ |
高温耐性
Quartz glass plates exhibit exceptional thermal resistance, capable of operating continuously at temperatures ranging from 1100°C to 1250°C, withstanding temperatures up to 1450°C for short periods.
Chemical Stability
With the exception of hydrofluoric acid, quartz glass plates are inert to most acids and chemical reagents, making them highly suitable for use in chemical industries and laboratory environments.
Optical Performance
Quartz glass plates possess superior optical transmission, particularly in the ultraviolet (UV) region, making them an ideal material for manufacturing optical components and instruments.
Dimensional Versatility
Quartz glass plates can be produced in a wide variety of sizes and specifications to meet various industrial applications and customer requirements.
アプリケーション・シナリオ
Semiconductor Manufacturing
Quartz glass plates are utilized as substrate materials in the semiconductor industry due to their exceptional thermal stability and chemical inertness. They serve as bases for growing semiconductor crystals, as photomasks in photolithography, and as components in etching and deposition processes.
Optical Device Manufacturing
Quartz glass plates play a crucial role in manufacturing optical devices, including fiber optic communications, lasers, and optical sensors. Their high refractive index, excellent transparency, and strong thermal stability make them a widely used material in the optics industry.
Aerospace
In the aerospace sector, quartz glass is a key component in spacecraft and space shuttles due to its high strength, low dielectric loss, high temperature resistance, and corrosion resistance. For instance, radiation-resistant quartz glass cover slips protect the energy systems of solar cells.
Large-size quartz glass plates exhibit excellent thermal resistance, capable of operating continuously at temperatures ranging from 1100°C to 1250°C and withstanding temperatures up to 1450°C for short periods. This makes them highly suitable for applications requiring high-temperature environments, such as semiconductor manufacturing and high-temperature experimentation.
In the field of optics, large-size quartz glass plates are widely used due to their high transparency, low refractive index, and excellent ultraviolet (UV) transmission. They can be used to manufacture optical mirrors, lenses, fiber optic communication components, lasers, and optical sensors. The optical performance of quartz glass plates makes them an ideal material for optical instrument manufacturing.
Large-size quartz glass plates demonstrate exceptional chemical stability, exhibiting inertness to most acids and chemical reagents, with the exception of hydrofluoric acid. This makes quartz glass plates very suitable for use in chemical industries and laboratory environments, such as for chemical experimental instruments, chemical pipelines, and reaction vessels, where they can maintain their performance without being eroded.
よくある質問
石英ガラスは硬くて脆い材料で、物理的、化学的性質が優れ、機械的硬度が非常に高く、電気絶縁性がよく、高温と耐食性に優れ、遅延性能が低く安定で、光透過性がよい。半導体、光学、電気、化学、航空宇宙、自動車などの分野で広く使用されている。硬くて脆い材料は加工が難しく、多くの分野で刃先の倒れが小さく、材料ロスが少なく、断面粗さが小さく、切断厚さ範囲が広い切断加工が急務となっている。石英ガラスの伝統的な切断方法は機械的切断、すなわち砥石切断である。非伝統的な切断方法には、ウォータージェット切断、電気化学放電ワイヤー切断、連続レーザー切断などがある。機械的切断はコストが低いが、ホイールと材料が接触するため工具の摩耗が大きく、材料が工具によって汚染されやすい。石英ガラスはエッジ崩壊、マイクロクラック、残留応力が発生しやすく、材料の強度や性能に影響する!曲線切断が難しく、研削や研磨などの後処理が必要。レーザー切断は材料に直接触れないため、接触応力がなく、複雑な曲線切断が可能です。ピコ秒レーザーは、スポット径が小さい、精度が高い、材料との作用時間が短い、作用面積が小さいなどの利点があり、硬くて脆い材料の加工に適しています。
。