Quartz flanges are high-performance pipe connection components made from high-purity quartz glass, characterized by their excellent corrosion resistance and high-temperature performance. They are widely used in industries such as chemical processing, pharmaceuticals, and bioengineering due to their ability to withstand extreme temperatures and chemical media, ensuring the stable operation and long-term reliability of piping systems.
物件内容 | 資産価値 |
---|---|
二酸化ケイ素 | 99.99% |
密度 | 2.2×10³ kg/cm³ |
硬度 | 5.5 - 6.5 モース硬度 570 KHN 100 |
引張強度 | 4.8×10⁷ Pa (N/mm2) (7000 psi) |
圧縮強度 | >1.1×10⁹Pa (160,000 psi) |
熱膨張係数 | 5.5×10-⁷cm/cm-°C (20°C-320°C) |
熱伝導率 | 1.4 W/m-°C |
比熱 | 670 J/kg-°C |
軟化点 | 1730度C(3146度F) |
アニーリングポイント | 1210度C(2210度F) |
ストレイン・ポイント | 1120度C(2048度F) |
作業温度 | 1200°C |
電気抵抗率 | 7×10⁷Ωcm (350°C) |
サイズ | カスタマイズ |
ロゴ | カスタマイズされたロゴ |
High-Temperature Performance
Quartz flanges can withstand extremely high temperatures, typically above 1000°C, making them suitable for high-temperature environments, such as high-temperature steam pipes and molten metal transport systems.
Excellent Chemical Stability
Quartz flanges exhibit exceptional resistance to various chemical substances, including strong acids, strong bases, and organic solvents, which makes them highly favored in the chemical and pharmaceutical industries.
High-Purity Material
Quartz flanges are manufactured from high-purity quartz glass, allowing their use in cleanroom environments within the semiconductor and microelectronics industries as they do not release particles or chemicals that could contaminate products.
Good Mechanical Strength and Durability
Quartz flanges possess good mechanical strength and durability, maintaining their structural integrity even under repeated temperature and pressure fluctuations, thereby extending the lifespan of equipment.
アプリケーション・シナリオ
Petrochemical Industry
Within the petrochemical industry, quartz flanges serve as important pipe connection components. They meet the requirements for harsh environments characterized by high temperatures, high pressure, and strong acids/bases. Their unique impact resistance makes them particularly useful for connecting pumps and valves.
Electronics and Electrical Industry
Quartz flanges are widely applied in the electronics and electrical industries, such as for connecting precision pipes in LED chip production, and oxide synthesis reactions in solar cell manufacturing. Their high purity and corrosion resistance ensure the precision connections and the purity and continuity of reaction processes.
The primary material of quartz flanges is high-purity quartz glass, which exhibits exceptional corrosion resistance and high-temperature performance. It can effectively resist the erosion of various chemical substances, including strong acids, strong bases, and organic solvents, while maintaining stability in high-temperature environments (typically exceeding 1000°C), without deforming or melting.
Quartz flanges are widely used in industries such as chemical processing, petrochemicals, electronics and electrical, and food manufacturing. In the chemical and petrochemical industries, they are used for pipe connections involving high-temperature and corrosive media. In the electronics and electrical industries, they are used for precise pipe connections in LED chip production and solar cell manufacturing. In the food manufacturing sector, they are used for transporting slightly corrosive materials, ensuring food safety.
The maintenance and replacement cycles of quartz flanges depend on multiple factors, including the operating environment, temperature, pressure, and the type of chemical media involved. Generally, if quartz flanges are properly used and regularly maintained, their service life can be quite long. However, with increased use, they may gradually lose performance due to wear, contamination, or the formation of micro-cracks. It becomes necessary to replace them when such issues occur. The specific maintenance and replacement cycles should be determined based on actual usage conditions and the manufacturer’s recommendations.
よくある質問
石英ガラスは硬くて脆い材料で、物理的、化学的性質が優れ、機械的硬度が非常に高く、電気絶縁性がよく、高温と耐食性に優れ、遅延性能が低く安定で、光透過性がよい。半導体、光学、電気、化学、航空宇宙、自動車などの分野で広く使用されている。硬くて脆い材料は加工が難しく、多くの分野で刃先の倒れが小さく、材料ロスが少なく、断面粗さが小さく、切断厚さ範囲が広い切断加工が急務となっている。石英ガラスの伝統的な切断方法は機械的切断、すなわち砥石切断である。非伝統的な切断方法には、ウォータージェット切断、電気化学放電ワイヤー切断、連続レーザー切断などがある。機械的切断はコストが低いが、ホイールと材料が接触するため工具の摩耗が大きく、材料が工具によって汚染されやすい。石英ガラスはエッジ崩壊、マイクロクラック、残留応力が発生しやすく、材料の強度や性能に影響する!曲線切断が難しく、研削や研磨などの後処理が必要。レーザー切断は材料に直接触れないため、接触応力がなく、複雑な曲線切断が可能です。ピコ秒レーザーは、スポット径が小さい、精度が高い、材料との作用時間が短い、作用面積が小さいなどの利点があり、硬くて脆い材料の加工に適しています。
。