Quartz wafers are high-purity materials characterized by their high temperature resistance, corrosion resistance, excellent optical properties, and electrical insulation capabilities. They are widely used in the semiconductor and optics industries. Additionally, their piezoelectric effect makes them key components in electronic devices such as crystal oscillators and sensors.
物件内容 | 資産価値 |
---|---|
二酸化ケイ素 | 99.99% |
密度 | 2.2×10³ kg/cm³ |
硬度 | 5.5 - 6.5 モース硬度 570 KHN 100 |
引張強度 | 4.8×10⁷ Pa (N/mm2) (7000 psi) |
圧縮強度 | >1.1×10⁹Pa (160,000 psi) |
熱膨張係数 | 5.5×10-⁷cm/cm-°C (20°C-320°C) |
熱伝導率 | 1.4 W/m-°C |
比熱 | 670 J/kg-°C |
軟化点 | 1730度C(3146度F) |
アニーリングポイント | 1210度C(2210度F) |
ストレイン・ポイント | 1120度C(2048度F) |
作業温度 | 1200°C |
電気抵抗率 | 7×10⁷Ωcm (350°C) |
サイズ | カスタマイズ |
ロゴ | カスタマイズされたロゴ |
High Purity and Transparency
Quartz wafers are made from high-purity silicon dioxide and exhibit extremely high transparency, making them ideal for optical applications, particularly across the ultraviolet to infrared spectrum.
高温耐性
Quartz wafers can withstand very high temperatures, with a softening point around 1730°C. They can be used for extended periods at 1100°C and withstand temperatures up to 1450°C for short durations, making them suitable for high-temperature process environments.
Chemical Stability
Quartz wafers exhibit high resistance to most chemicals, except for hydrofluoric acid. This makes them very stable in both chemical laboratory and industrial applications.
Piezoelectric Effect
Single-crystal quartz wafers possess a piezoelectric effect, meaning they generate an electrical charge when subjected to mechanical stress. This property is crucial in the manufacturing of electronic devices like crystal oscillators and sensors.
アプリケーション・シナリオ
Semiconductor Manufacturing
Quartz wafers play a crucial role in semiconductor manufacturing, especially in silicon wafer fabrication and wafer processing. They are used to create quartz crucibles for wafer IC carriers (single crystal pulling) and as quartz components, such as quartz diffusion tubes, quartz flanges, and quartz furnace tubes, in processes like oxidation, epitaxy, photolithography, etching, and diffusion.
Quartz wafers are essential in semiconductor manufacturing because they provide a high-temperature resistant, chemically stable, and electrically insulating substrate. This is indispensable for wafer processing and integrated circuit fabrication. The purity and physical properties of quartz wafers directly impact the performance and reliability of semiconductor devices.
The high transparency and broad spectral transmission of quartz wafers make them ideal materials for manufacturing high-end optical components, such as lenses, windows, and filters. These properties ensure effective light transmission and precise control, which are critical for enhancing the performance of optical systems.
The piezoelectric effect of quartz wafers makes them widely applicable in electronic devices, particularly in the manufacturing of crystal oscillators and sensors. The piezoelectric effect allows quartz wafers to generate an electrical charge when subjected to mechanical stress, which is crucial for precisely controlling frequencies and measuring minute changes.
よくある質問
石英ガラスは硬くて脆い材料で、物理的、化学的性質が優れ、機械的硬度が非常に高く、電気絶縁性がよく、高温と耐食性に優れ、遅延性能が低く安定で、光透過性がよい。半導体、光学、電気、化学、航空宇宙、自動車などの分野で広く使用されている。硬くて脆い材料は加工が難しく、多くの分野で刃先の倒れが小さく、材料ロスが少なく、断面粗さが小さく、切断厚さ範囲が広い切断加工が急務となっている。石英ガラスの伝統的な切断方法は機械的切断、すなわち砥石切断である。非伝統的な切断方法には、ウォータージェット切断、電気化学放電ワイヤー切断、連続レーザー切断などがある。機械的切断はコストが低いが、ホイールと材料が接触するため工具の摩耗が大きく、材料が工具によって汚染されやすい。石英ガラスはエッジ崩壊、マイクロクラック、残留応力が発生しやすく、材料の強度や性能に影響する!曲線切断が難しく、研削や研磨などの後処理が必要。レーザー切断は材料に直接触れないため、接触応力がなく、複雑な曲線切断が可能です。ピコ秒レーザーは、スポット径が小さい、精度が高い、材料との作用時間が短い、作用面積が小さいなどの利点があり、硬くて脆い材料の加工に適しています。
。