Large-size quartz glass plates, characterized by their exceptional high-temperature resistance, corrosion resistance, and optical properties, are widely utilized in numerous fields such as semiconductors, optics, and high-temperature manufacturing. These plates are typically produced through a continuous fusion method and are available in various sizes and specifications to meet diverse industrial needs.
Contenido de la propiedad | Valores inmobiliarios |
---|---|
SiO2 | 99.99% |
Densidad | 2,2×10³ kg/cm³ |
Dureza | 5,5 - 6,5 Escala de Mohs 570 KHN 100 |
Resistencia a la tracción | 4,8×10⁷ Pa (N/mm2) (7000 psi) |
Resistencia a la compresión | >1,1×10⁹ Pa (160.000 psi) |
Coeficiente de dilatación térmica | 5,5×10-⁷ cm/cm-°C (20°C-320°C) |
Conductividad térmica | 1,4 W/m-°C |
Calor específico | 670 J/kg-°C |
Punto de ablandamiento | 1730°C (3146°F) |
Punto de recocido | 1210°C (2210°F) |
Punto de deformación | 1120°C (2048°F) |
Temperatura de trabajo | 1200°C (2192°F) |
Resistividad eléctrica | 7×10⁷ ohm cm (350°C) |
Talla | Personalizado |
Logotipo | Logotipo personalizado Aceptar |
Resistencia a altas temperaturas
Quartz glass plates exhibit exceptional thermal resistance, capable of operating continuously at temperatures ranging from 1100°C to 1250°C, withstanding temperatures up to 1450°C for short periods.
Chemical Stability
With the exception of hydrofluoric acid, quartz glass plates are inert to most acids and chemical reagents, making them highly suitable for use in chemical industries and laboratory environments.
Optical Performance
Quartz glass plates possess superior optical transmission, particularly in the ultraviolet (UV) region, making them an ideal material for manufacturing optical components and instruments.
Dimensional Versatility
Quartz glass plates can be produced in a wide variety of sizes and specifications to meet various industrial applications and customer requirements.
Escenario de aplicación
Semiconductor Manufacturing
Quartz glass plates are utilized as substrate materials in the semiconductor industry due to their exceptional thermal stability and chemical inertness. They serve as bases for growing semiconductor crystals, as photomasks in photolithography, and as components in etching and deposition processes.
Optical Device Manufacturing
Quartz glass plates play a crucial role in manufacturing optical devices, including fiber optic communications, lasers, and optical sensors. Their high refractive index, excellent transparency, and strong thermal stability make them a widely used material in the optics industry.
Aerospace
In the aerospace sector, quartz glass is a key component in spacecraft and space shuttles due to its high strength, low dielectric loss, high temperature resistance, and corrosion resistance. For instance, radiation-resistant quartz glass cover slips protect the energy systems of solar cells.
Large-size quartz glass plates exhibit excellent thermal resistance, capable of operating continuously at temperatures ranging from 1100°C to 1250°C and withstanding temperatures up to 1450°C for short periods. This makes them highly suitable for applications requiring high-temperature environments, such as semiconductor manufacturing and high-temperature experimentation.
In the field of optics, large-size quartz glass plates are widely used due to their high transparency, low refractive index, and excellent ultraviolet (UV) transmission. They can be used to manufacture optical mirrors, lenses, fiber optic communication components, lasers, and optical sensors. The optical performance of quartz glass plates makes them an ideal material for optical instrument manufacturing.
Large-size quartz glass plates demonstrate exceptional chemical stability, exhibiting inertness to most acids and chemical reagents, with the exception of hydrofluoric acid. This makes quartz glass plates very suitable for use in chemical industries and laboratory environments, such as for chemical experimental instruments, chemical pipelines, and reaction vessels, where they can maintain their performance without being eroded.
Preguntas más frecuentes
El vidrio de cuarzo es un material duro y quebradizo con excelentes propiedades físicas y químicas, dureza mecánica extremadamente alta, buen aislamiento eléctrico, resistencia a altas temperaturas y a la corrosión, rendimiento de retardo bajo y estable, buena transmitancia luminosa, etc. Se utiliza ampliamente en semiconductores, óptica, electricidad, química, aeroespacial, automoción y otros campos. Los materiales duros y quebradizos son difíciles de procesar, y muchos campos necesitan urgentemente procesos de corte con un pequeño colapso del borde, menos pérdida de material, baja rugosidad de la sección transversal y un amplio rango de grosor de corte. El método de corte tradicional del vidrio de cuarzo es el corte mecánico, es decir, el corte por disco. Los métodos de corte no tradicionales incluyen el corte por chorro de agua, el corte por hilo de descarga electroquímica, el corte por láser continuo, etc. El corte mecánico tiene un bajo coste, pero el contacto entre la rueda y el material causa un gran desgaste de la herramienta, y el material es fácilmente contaminado por la herramienta. El vidrio de cuarzo es propenso al colapso de los bordes, las microfisuras y la tensión residual, lo que afecta a la resistencia y el rendimiento del material. Es difícil conseguir un corte curvo y requiere un tratamiento posterior, como esmerilado y pulido. El corte por láser no entra en contacto directo con el material, no tiene tensión de contacto y puede realizar cortes curvos complejos. El láser de picosegundos tiene las ventajas de un diámetro de punto pequeño, alta precisión, tiempo de acción corto con el material y área de acción pequeña, y es adecuado para el procesamiento de materiales duros y quebradizos.
。