Quartz laser-drilled glass plates refer to products in which holes are created on quartz glass plates using laser drilling technology. Quartz glass, due to its excellent properties such as high light transmission, high hardness, high-temperature resistance, and corrosion resistance, is widely used in many fields. Laser drilling technology, with its high precision, high efficiency, and non-contact nature, has become an important method for processing quartz glass plates.
The principle behind laser drilling of quartz glass plates mainly involves using a high-energy density laser beam to focus and locally heat the quartz glass. This causes the quartz glass to undergo thermal expansion, thereby creating holes at the designated locations. The high energy and precise focusing of the laser beam result in a highly accurate and rapid processing, while also avoiding material damage and stress concentrations that can occur with traditional mechanical drilling methods.
Contenido de la propiedad | Valores inmobiliarios |
---|---|
SiO2 | 99.99% |
Densidad | 2,2×10³ kg/cm³ |
Dureza | 5,5 - 6,5 Escala de Mohs 570 KHN 100 |
Resistencia a la tracción | 4,8×10⁷ Pa (N/mm2) (7000 psi) |
Resistencia a la compresión | >1,1×10⁹ Pa (160.000 psi) |
Coeficiente de dilatación térmica | 5,5×10-⁷ cm/cm-°C (20°C-320°C) |
Conductividad térmica | 1,4 W/m-°C |
Calor específico | 670 J/kg-°C |
Punto de ablandamiento | 1730°C (3146°F) |
Punto de recocido | 1210°C (2210°F) |
Punto de deformación | 1120°C (2048°F) |
Temperatura de trabajo | 1200°C (2192°F) |
Resistividad eléctrica | 7×10⁷ ohm cm (350°C) |
Talla | Personalizado |
Logotipo | Logotipo personalizado Aceptar |
JGS1
Commonly known as UV-grade fused silica, this material exhibits exceptionally low dispersion and very high transmittance in the ultraviolet (UV) spectral range.
JGS2
Similar to JGS1, but may have variations in specific performance parameters such as transmittance and thermal expansion coefficient, depending on the manufacturer’s standards.
JGS3
Typically used in applications requiring higher purity or specialized performance characteristics. Specific performance parameters can vary based on the manufacturer.
High Precision
Laser drilling technology can achieve processing precision at the micrometer and even nanometer level, meeting the requirements of high-precision applications.
High Efficiency
Laser drilling speeds are much faster than traditional mechanical drilling methods, significantly improving production efficiency.
Non-Contact Processing
During laser drilling, the laser beam does not make direct contact with the material, avoiding material damage caused by mechanical stress.
High Flexibility
Laser drilling can be performed on irregular surfaces, and hole patterns or complex shapes can be set up arbitrarily.
Escenario de aplicación
Preguntas más frecuentes
El vidrio de cuarzo es un material duro y quebradizo con excelentes propiedades físicas y químicas, dureza mecánica extremadamente alta, buen aislamiento eléctrico, resistencia a altas temperaturas y a la corrosión, rendimiento de retardo bajo y estable, buena transmitancia luminosa, etc. Se utiliza ampliamente en semiconductores, óptica, electricidad, química, aeroespacial, automoción y otros campos. Los materiales duros y quebradizos son difíciles de procesar, y muchos campos necesitan urgentemente procesos de corte con un pequeño colapso del borde, menos pérdida de material, baja rugosidad de la sección transversal y un amplio rango de grosor de corte. El método de corte tradicional del vidrio de cuarzo es el corte mecánico, es decir, el corte por disco. Los métodos de corte no tradicionales incluyen el corte por chorro de agua, el corte por hilo de descarga electroquímica, el corte por láser continuo, etc. El corte mecánico tiene un bajo coste, pero el contacto entre la rueda y el material causa un gran desgaste de la herramienta, y el material es fácilmente contaminado por la herramienta. El vidrio de cuarzo es propenso al colapso de los bordes, las microfisuras y la tensión residual, lo que afecta a la resistencia y el rendimiento del material. Es difícil conseguir un corte curvo y requiere un tratamiento posterior, como esmerilado y pulido. El corte por láser no entra en contacto directo con el material, no tiene tensión de contacto y puede realizar cortes curvos complejos. El láser de picosegundos tiene las ventajas de un diámetro de punto pequeño, alta precisión, tiempo de acción corto con el material y área de acción pequeña, y es adecuado para el procesamiento de materiales duros y quebradizos.
。