Quartz wafers are high-purity materials characterized by their high temperature resistance, corrosion resistance, excellent optical properties, and electrical insulation capabilities. They are widely used in the semiconductor and optics industries. Additionally, their piezoelectric effect makes them key components in electronic devices such as crystal oscillators and sensors.
Contenido de la propiedad | Valores inmobiliarios |
---|---|
SiO2 | 99.99% |
Densidad | 2,2×10³ kg/cm³ |
Dureza | 5,5 - 6,5 Escala de Mohs 570 KHN 100 |
Resistencia a la tracción | 4,8×10⁷ Pa (N/mm2) (7000 psi) |
Resistencia a la compresión | >1,1×10⁹ Pa (160.000 psi) |
Coeficiente de dilatación térmica | 5,5×10-⁷ cm/cm-°C (20°C-320°C) |
Conductividad térmica | 1,4 W/m-°C |
Calor específico | 670 J/kg-°C |
Punto de ablandamiento | 1730°C (3146°F) |
Punto de recocido | 1210°C (2210°F) |
Punto de deformación | 1120°C (2048°F) |
Temperatura de trabajo | 1200°C (2192°F) |
Resistividad eléctrica | 7×10⁷ ohm cm (350°C) |
Talla | Personalizado |
Logotipo | Logotipo personalizado Aceptar |
High Purity and Transparency
Quartz wafers are made from high-purity silicon dioxide and exhibit extremely high transparency, making them ideal for optical applications, particularly across the ultraviolet to infrared spectrum.
Resistencia a altas temperaturas
Quartz wafers can withstand very high temperatures, with a softening point around 1730°C. They can be used for extended periods at 1100°C and withstand temperatures up to 1450°C for short durations, making them suitable for high-temperature process environments.
Chemical Stability
Quartz wafers exhibit high resistance to most chemicals, except for hydrofluoric acid. This makes them very stable in both chemical laboratory and industrial applications.
Piezoelectric Effect
Single-crystal quartz wafers possess a piezoelectric effect, meaning they generate an electrical charge when subjected to mechanical stress. This property is crucial in the manufacturing of electronic devices like crystal oscillators and sensors.
Escenario de aplicación
Semiconductor Manufacturing
Quartz wafers play a crucial role in semiconductor manufacturing, especially in silicon wafer fabrication and wafer processing. They are used to create quartz crucibles for wafer IC carriers (single crystal pulling) and as quartz components, such as quartz diffusion tubes, quartz flanges, and quartz furnace tubes, in processes like oxidation, epitaxy, photolithography, etching, and diffusion.
Quartz wafers are essential in semiconductor manufacturing because they provide a high-temperature resistant, chemically stable, and electrically insulating substrate. This is indispensable for wafer processing and integrated circuit fabrication. The purity and physical properties of quartz wafers directly impact the performance and reliability of semiconductor devices.
The high transparency and broad spectral transmission of quartz wafers make them ideal materials for manufacturing high-end optical components, such as lenses, windows, and filters. These properties ensure effective light transmission and precise control, which are critical for enhancing the performance of optical systems.
The piezoelectric effect of quartz wafers makes them widely applicable in electronic devices, particularly in the manufacturing of crystal oscillators and sensors. The piezoelectric effect allows quartz wafers to generate an electrical charge when subjected to mechanical stress, which is crucial for precisely controlling frequencies and measuring minute changes.
Preguntas más frecuentes
El vidrio de cuarzo es un material duro y quebradizo con excelentes propiedades físicas y químicas, dureza mecánica extremadamente alta, buen aislamiento eléctrico, resistencia a altas temperaturas y a la corrosión, rendimiento de retardo bajo y estable, buena transmitancia luminosa, etc. Se utiliza ampliamente en semiconductores, óptica, electricidad, química, aeroespacial, automoción y otros campos. Los materiales duros y quebradizos son difíciles de procesar, y muchos campos necesitan urgentemente procesos de corte con un pequeño colapso del borde, menos pérdida de material, baja rugosidad de la sección transversal y un amplio rango de grosor de corte. El método de corte tradicional del vidrio de cuarzo es el corte mecánico, es decir, el corte por disco. Los métodos de corte no tradicionales incluyen el corte por chorro de agua, el corte por hilo de descarga electroquímica, el corte por láser continuo, etc. El corte mecánico tiene un bajo coste, pero el contacto entre la rueda y el material causa un gran desgaste de la herramienta, y el material es fácilmente contaminado por la herramienta. El vidrio de cuarzo es propenso al colapso de los bordes, las microfisuras y la tensión residual, lo que afecta a la resistencia y el rendimiento del material. Es difícil conseguir un corte curvo y requiere un tratamiento posterior, como esmerilado y pulido. El corte por láser no entra en contacto directo con el material, no tiene tensión de contacto y puede realizar cortes curvos complejos. El láser de picosegundos tiene las ventajas de un diámetro de punto pequeño, alta precisión, tiempo de acción corto con el material y área de acción pequeña, y es adecuado para el procesamiento de materiales duros y quebradizos.
。