Quartz XRD sample holders are used to load quartz samples for X-ray diffraction experiments. During sample preparation, it is essential to ensure that the sample powder is dry, has uniform particle size, and has a flat, tightly packed surface to obtain accurate diffraction data. When using the sample holder, the sample should be placed at the center of the stage, and the sample surface should be tangent to the focusing circle to avoid height errors affecting the test results.
Contenido de la propiedad | Valores inmobiliarios |
---|---|
SiO2 | 99.99% |
Densidad | 2,2×10³ kg/cm³ |
Dureza | 5,5 - 6,5 Escala de Mohs 570 KHN 100 |
Resistencia a la tracción | 4,8×10⁷ Pa (N/mm2) (7000 psi) |
Resistencia a la compresión | >1,1×10⁹ Pa (160.000 psi) |
Coeficiente de dilatación térmica | 5,5×10-⁷ cm/cm-°C (20°C-320°C) |
Conductividad térmica | 1,4 W/m-°C |
Calor específico | 670 J/kg-°C |
Punto de ablandamiento | 1730°C (3146°F) |
Punto de recocido | 1210°C (2210°F) |
Punto de deformación | 1120°C (2048°F) |
Temperatura de trabajo | 1200°C (2192°F) |
Resistividad eléctrica | 7×10⁷ ohm cm (350°C) |
Talla | Personalizado |
Logotipo | Logotipo personalizado Aceptar |
Resistencia a altas temperaturas
Quartz XRD sample holders are made of quartz glass, which has a softening point of approximately 1730°C. They can be used for extended periods at 1100°C and for short durations at temperatures up to 1450°C.
Chemical Stability
Quartz glass is highly resistant to chemical reactions with most acids. Its acid resistance is approximately 30 times higher than ceramics and 150 times higher than stainless steel. It exhibits exceptional chemical stability, particularly at high temperatures.
Low Thermal Expansion Coefficient
Quartz glass has an extremely low coefficient of thermal expansion, allowing it to withstand rapid temperature changes without fracturing. This provides excellent thermal stability.
Good Optical Transmission
Quartz glass exhibits excellent optical transmission across the entire spectrum from ultraviolet to infrared. Its visible light transmission is greater than 93%, and in the ultraviolet spectral region, its transmission can exceed 90%.
Escenario de aplicación
Crystal Structure Analysis in Materials Science
Quartz XRD sample holders are crucial in various fields of materials science, especially for crystal structure analysis. By analyzing the diffraction patterns produced from the interaction of X-rays with a material, vital information about the material’s crystal structure, grain size, phase composition, and stress state can be obtained.
Phase Composition and Multi-Phase Material Analysis
Quartz XRD sample holders are used to identify components and their relative proportions within polycrystalline materials such as alloys, ceramics, and composites. They are also important for investigating the local structural characteristics of amorphous materials, such as glass and amorphous alloys.
Phase Transition and Thermal Stability Studies
Quartz XRD sample holders enable the study of phase transition behavior in materials under varying temperature or pressure conditions. By heating or cooling samples and monitoring their diffraction patterns, researchers can determine whether phase transitions occur under specific conditions.
Critical Material Applications in Semiconductor Manufacturing
In the semiconductor industry, quartz XRD sample holders play an important role because of their high-temperature and corrosion-resistant properties. They are used in high-temperature devices, such as furnace tubes and glass boats for diffusion and oxidation processes, and in low-temperature devices, such as quartz rings for etching processes.
When using quartz XRD sample holders for experiments, the following points should be observed:
Ensure the sample holder is clean and free of dust to avoid contaminating the sample and affecting diffraction results.
The sample should be evenly distributed in the sample holder to obtain optimal diffraction signals.
Avoid exposing the sample holder to drastic temperature changes to prevent the quartz glass from cracking due to excessive temperature differentials.
When using the sample holder at high temperatures or under specific conditions, follow the manufacturer’s guidelines and safety regulations.
The following steps can be used to clean and maintain quartz XRD sample holders:
Gently remove dust and residue from the surface of the sample holder using a soft cloth or brush.
For stubborn stains, use a mild detergent and water for cleaning, but ensure thorough rinsing and drying to avoid any chemical residue.
Regularly check the sample holder for cracks or damage, particularly after high-temperature or high-pressure experiments.
Store in a dry, clean place, away from direct sunlight and humid environments.
The lifespan of a quartz XRD sample holder depends on various factors, including:
Usage frequency and experimental conditions; frequent use or use under extreme conditions may shorten its lifespan.
Maintenance and cleanliness of the sample holder; good maintenance can prolong its lifespan.
Material and manufacturing quality of the sample holder; high-quality quartz glass is typically more durable.
Preguntas más frecuentes
El vidrio de cuarzo es un material duro y quebradizo con excelentes propiedades físicas y químicas, dureza mecánica extremadamente alta, buen aislamiento eléctrico, resistencia a altas temperaturas y a la corrosión, rendimiento de retardo bajo y estable, buena transmitancia luminosa, etc. Se utiliza ampliamente en semiconductores, óptica, electricidad, química, aeroespacial, automoción y otros campos. Los materiales duros y quebradizos son difíciles de procesar, y muchos campos necesitan urgentemente procesos de corte con un pequeño colapso del borde, menos pérdida de material, baja rugosidad de la sección transversal y un amplio rango de grosor de corte. El método de corte tradicional del vidrio de cuarzo es el corte mecánico, es decir, el corte por disco. Los métodos de corte no tradicionales incluyen el corte por chorro de agua, el corte por hilo de descarga electroquímica, el corte por láser continuo, etc. El corte mecánico tiene un bajo coste, pero el contacto entre la rueda y el material causa un gran desgaste de la herramienta, y el material es fácilmente contaminado por la herramienta. El vidrio de cuarzo es propenso al colapso de los bordes, las microfisuras y la tensión residual, lo que afecta a la resistencia y el rendimiento del material. Es difícil conseguir un corte curvo y requiere un tratamiento posterior, como esmerilado y pulido. El corte por láser no entra en contacto directo con el material, no tiene tensión de contacto y puede realizar cortes curvos complejos. El láser de picosegundos tiene las ventajas de un diámetro de punto pequeño, alta precisión, tiempo de acción corto con el material y área de acción pequeña, y es adecuado para el procesamiento de materiales duros y quebradizos.
。