Quartz source bottles are typically made from high-purity quartz glass, which provides excellent resistance to high temperatures, corrosion, and strong acids. They are primarily used for the storage and transfer of high-purity chemical raw materials such as phosphorus oxychloride (POCl3). Additionally, they are used as reaction vessels or source bottles during various chemical reactions in laboratories. The cleanroom packaging design of quartz source bottles ensures the purity of the raw materials and prevents contamination.
Property Content | Property Values |
---|---|
SiO2 | 99.99% |
Density | 2.2×10³ kg/cm³ |
Hardness | 5.5 - 6.5 Mohs' Scale 570 KHN 100 |
Tensile Strength | 4.8×10⁷ Pa (N/mm2) (7000 psi) |
Compression Strength | >1.1×10⁹ Pa (160,000 psi) |
Coefficient of Thermal Expansion | 5.5×10⁻⁷ cm/cm·°C (20°C-320°C) |
Thermal Conductivity | 1.4 W/m·°C |
Specific Heat | 670 J/kg·°C |
Softening Point | 1730°C (3146°F) |
Annealing Point | 1210°C (2210°F) |
Strain Point | 1120°C (2048°F) |
Work Temperature | 1200°C (2192°F) |
Electrical Resistivity | 7×10⁷ ohm cm (350°C) |
Size | Customized |
Logo | Customized Logo Accept |
High Purity
Quartz source bottles are made from high-purity quartz glass, ensuring the chemical stability and purity of the container, thus preventing any reactions with or contamination of the stored materials.
High-Temperature Resistance
Quartz glass possesses excellent high-temperature resistance, enabling long-term use at elevated temperatures without deformation or damage.
Corrosion Resistance
Quartz glass demonstrates good corrosion resistance to a wide variety of chemical reagents, making it suitable for storing and transferring various corrosive substances.
Easy Cleaning
The smooth surface of quartz glass prevents dirt from adhering, facilitating easy cleaning and maintenance.
Application Scenario
Semiconductor Industry
Semiconductor Material and Device Production: Quartz source bottles are indispensable materials in semiconductor production, frequently used in crucibles, boats, furnace core tubes, and bell jars for growing germanium and silicon single crystals. These components need to withstand high temperatures and corrosive environments, making the high-temperature and corrosion resistance of quartz source bottles ideal.
Cleaning and Diffusion: In semiconductor cleaning and diffusion processes, quartz source bottles are also commonly used as cleaning tanks and diffusion tubes to ensure process stability and precision.
Optical Technology
Optical Instruments and Equipment: Due to their excellent optical properties, quartz source bottles are widely used in making prisms and lenses for optical instruments such as ultrasonic delay lines in radar, infrared tracking and ranging equipment, infrared cameras, communication devices, spectrographs, and spectrophotometers.
Large Astronomical Telescopes: Quartz glass, due to its high transparency and low thermal expansion coefficient, is also used in manufacturing reflective windows for large astronomical telescopes to enhance the telescope’s observation precision and stability.
Laboratory and Research
Laboratory Containers: Due to their chemical stability and high-temperature resistance, quartz source bottles are often used as laboratory containers, such as for collecting and processing chemical waste.
Research Equipment: In research settings, quartz source bottles are also used to manufacture various precision components for research equipment to meet the needs of scientific studies.
Quartz source bottles have a silicon dioxide (SiO2) content of up to 99.995%, which eliminates risks associated with glass inhomogeneity (including layering) and the leaching of problematic metal ions.
Quartz source bottles exhibit extremely high stability at high temperatures and do not easily deform. Their low thermal expansion coefficient and excellent thermal shock resistance allow them to maintain their shape and structural integrity under drastic temperature changes.
Ensuring Experimental Accuracy: Quartz source bottles can remain stable at temperatures up to 1100°C. This means that in high-temperature experiments, quartz source bottles serve as reliable containers, ensuring that the accuracy of the experimental results is not compromised by thermal deformation or decomposition of the container.
Enhancing Experimental Safety: Quartz source bottles possess outstanding thermal shock resistance, meaning they are not prone to cracking even under rapid temperature changes. This significantly reduces safety risks in high-temperature experiments, protecting laboratory personnel and equipment.
Frequently asked questions
Quartz glass is a hard and brittle material with excellent physical and chemical properties, extremely high mechanical hardness, good electrical insulation, high temperature and corrosion resistance, low and stable delay performance, good light transmittance, etc. It is widely used in semiconductors, optics, electricity, chemistry, aerospace, automobiles and other fields. Hard and brittle materials are difficult to process, and many fields urgently need cutting processes with small edge collapse, less material loss, low cross-section roughness, and a wide cutting thickness range. The traditional cutting method of quartz glass is mechanical cutting, that is, wheel cutting. Non-traditional cutting methods include water jet cutting, electrochemical discharge wire cutting, continuous laser cutting, etc. Mechanical cutting has low cost, but the contact between the wheel and the material causes large tool wear, and the material is easily contaminated by the tool. Quartz glass is prone to edge collapse, microcracks, and residual stress, which affects the strength and performance of the material! It is difficult to achieve curve cutting and requires post-processing, such as grinding and polishing. Laser cutting does not directly contact the material, has no contact stress, and can perform complex curve cutting. Picosecond laser has the advantages of small spot diameter, high precision, short action time with the material, and small action area, and is suitable for the processing of hard and brittle materials.
。