A Quartz Square Window is a square observation window made from quartz glass, characterized by its high transparency, high heat resistance, and high chemical stability. These properties make it an ideal choice for vacuum equipment, optical instruments, and scientific research applications, providing a clear viewing perspective even in extreme environments.
Property Content | Property Values |
---|---|
SiO2 | 99.99% |
Density | 2.2×10³ kg/cm³ |
Hardness | 5.5 - 6.5 Mohs' Scale 570 KHN 100 |
Tensile Strength | 4.8×10⁷ Pa (N/mm2) (7000 psi) |
Compression Strength | >1.1×10⁹ Pa (160,000 psi) |
Coefficient of Thermal Expansion | 5.5×10⁻⁷ cm/cm·°C (20°C-320°C) |
Thermal Conductivity | 1.4 W/m·°C |
Specific Heat | 670 J/kg·°C |
Softening Point | 1730°C (3146°F) |
Annealing Point | 1210°C (2210°F) |
Strain Point | 1120°C (2048°F) |
Work Temperature | 1200°C (2192°F) |
Electrical Resistivity | 7×10⁷ ohm cm (350°C) |
Size | Customized |
Logo | Customized Logo Accept |
High Transparency
Quartz Square Windows offer excellent optical transmission, allowing for high-definition observation, which is crucial for applications requiring precise visual inspection.
High Heat Resistance
These windows are capable of withstanding high-temperature environments, possessing high heat resistance, making them suitable for equipment and instruments that require observation under high-temperature conditions.
High Chemical Stability
Quartz Square Windows exhibit high resistance to a variety of chemicals, including most acids and bases. This makes them highly stable in chemical laboratories and industrial applications.
Thermal Shock Resistance
SQuartz Square Windows possess good thermal shock resistance, maintaining their performance and resisting breakage even under rapid temperature changes, making them suitable for environments with significant temperature fluctuations.
Application Scenario
Quartz Square Windows are crucial in vacuum equipment because they provide a transparent window for observing internal processes while maintaining a vacuum seal. The high heat resistance and chemical stability of quartz glass allow it to withstand the extreme conditions of vacuum environments, while its high transparency ensures clarity of observation.
Quartz Square Windows exhibit superior heat resistance, able to withstand continuous use temperatures of up to 1100°C and short-term temperatures of up to 1450°C. This makes them highly suitable for applications that require observing high-temperature processes, such as high-temperature furnaces and chemical reactors.
The applications of Quartz Square Windows in optical instruments include their use as window plates in microscopes, entrance and exit windows in spectrometers, and other optical components requiring high light transmission and low dispersion. The superior optical properties of quartz glass make it an ideal material choice for these applications.
Frequently asked questions
Quartz glass is a hard and brittle material with excellent physical and chemical properties, extremely high mechanical hardness, good electrical insulation, high temperature and corrosion resistance, low and stable delay performance, good light transmittance, etc. It is widely used in semiconductors, optics, electricity, chemistry, aerospace, automobiles and other fields. Hard and brittle materials are difficult to process, and many fields urgently need cutting processes with small edge collapse, less material loss, low cross-section roughness, and a wide cutting thickness range. The traditional cutting method of quartz glass is mechanical cutting, that is, wheel cutting. Non-traditional cutting methods include water jet cutting, electrochemical discharge wire cutting, continuous laser cutting, etc. Mechanical cutting has low cost, but the contact between the wheel and the material causes large tool wear, and the material is easily contaminated by the tool. Quartz glass is prone to edge collapse, microcracks, and residual stress, which affects the strength and performance of the material! It is difficult to achieve curve cutting and requires post-processing, such as grinding and polishing. Laser cutting does not directly contact the material, has no contact stress, and can perform complex curve cutting. Picosecond laser has the advantages of small spot diameter, high precision, short action time with the material, and small action area, and is suitable for the processing of hard and brittle materials.
。