A quartz custom window is an observation window made primarily from quartz glass, which is fabricated into various shapes and specifications according to specific application requirements.
Property Content | Property Values |
---|---|
SiO2 | 99.99% |
Density | 2.2×10³ kg/cm³ |
Hardness | 5.5 - 6.5 Mohs' Scale 570 KHN 100 |
Tensile Strength | 4.8×10⁷ Pa (N/mm2) (7000 psi) |
Compression Strength | >1.1×10⁹ Pa (160,000 psi) |
Coefficient of Thermal Expansion | 5.5×10⁻⁷ cm/cm·°C (20°C-320°C) |
Thermal Conductivity | 1.4 W/m·°C |
Specific Heat | 670 J/kg·°C |
Softening Point | 1730°C (3146°F) |
Annealing Point | 1210°C (2210°F) |
Strain Point | 1120°C (2048°F) |
Work Temperature | 1200°C (2192°F) |
Electrical Resistivity | 7×10⁷ ohm cm (350°C) |
Size | Customized |
Logo | Customized Logo Accept |
High-Temperature Resistance
Quartz custom windows can withstand extremely high temperatures, with a softening point around 1730°C. They can be used continuously at 1100°C and can tolerate short-term temperatures up to 1450°C.
Chemical Stability
Except for hydrofluoric acid, quartz custom windows are highly resistant to chemical reactions with almost all acids, exhibiting exceptional chemical stability.
Thermal Stability
Quartz custom windows have a very low thermal expansion coefficient, enabling them to withstand dramatic temperature changes. They can endure large temperature differences repeatedly within a short period without cracking.
Optical Performance
Quartz custom windows exhibit good light transmission across the entire spectrum from ultraviolet to infrared. They have a visible light transmission rate above 93%, with higher transmission rates, up to 80% or more, particularly in the ultraviolet range.
Application Scenario
Optical and Light Source Industries
Quartz custom windows, due to their high heat resistance, corrosion resistance, and low thermal expansion, are widely used in the optical field for manufacturing telescope lenses, laboratory optical equipment, communication devices, diffractive lenses, projection displays, scanning equipment, printer optical components, and also in cameras and ultra-flat television screens.
Optical Fiber Communication Industry
Quartz glass is a primary raw material for optical fibers, and its high purity ensures the signal quality of optical fibers. Quartz glass is extensively used in the production of optical fiber rods and drawing processes, guaranteeing high performance and stability of optical fibers.
Photovoltaic Industry
In the photovoltaic field, quartz glass is used as a rigid consumable material in photovoltaic modules, greatly increasing photoelectric conversion efficiency. Quartz crucibles made from quartz glass are used as containers for melting polycrystalline silicon, for the subsequent process of pulling single-crystal silicon rods or multi-crystal silicon ingots.
The primary material of quartz custom windows is high-purity quartz glass, which possesses unique physical properties including extremely high-temperature resistance (capable of continuous use at 1100°C and short-term exposure up to 1450°C), excellent optical transmission (particularly in the ultraviolet range), an extremely low thermal expansion coefficient, and outstanding chemical stability. These characteristics make them highly desirable in a variety of industrial applications.
Quartz custom windows exhibit exceptionally high resistance to most chemicals, except for hydrofluoric acid and hot phosphoric acid. This makes them highly suitable for chemical laboratories, chemical production, and other applications where corrosion-resistant viewports are required.
The advantages of quartz custom windows in optical applications stem from their high transparency and broad spectral transmission, enabling excellent light transmission across the entire spectrum from ultraviolet to infrared. This feature is critical for applications requiring high clarity and precise control of light, such as in high-end optical instruments, optical fiber communication, and research equipment.
Frequently asked questions
Quartz glass is a hard and brittle material with excellent physical and chemical properties, extremely high mechanical hardness, good electrical insulation, high temperature and corrosion resistance, low and stable delay performance, good light transmittance, etc. It is widely used in semiconductors, optics, electricity, chemistry, aerospace, automobiles and other fields. Hard and brittle materials are difficult to process, and many fields urgently need cutting processes with small edge collapse, less material loss, low cross-section roughness, and a wide cutting thickness range. The traditional cutting method of quartz glass is mechanical cutting, that is, wheel cutting. Non-traditional cutting methods include water jet cutting, electrochemical discharge wire cutting, continuous laser cutting, etc. Mechanical cutting has low cost, but the contact between the wheel and the material causes large tool wear, and the material is easily contaminated by the tool. Quartz glass is prone to edge collapse, microcracks, and residual stress, which affects the strength and performance of the material! It is difficult to achieve curve cutting and requires post-processing, such as grinding and polishing. Laser cutting does not directly contact the material, has no contact stress, and can perform complex curve cutting. Picosecond laser has the advantages of small spot diameter, high precision, short action time with the material, and small action area, and is suitable for the processing of hard and brittle materials.
。