Quartz source bottles are typically made from high-purity quartz glass, which provides excellent resistance to high temperatures, corrosion, and strong acids. They are primarily used for the storage and transfer of high-purity chemical raw materials such as phosphorus oxychloride (POCl3). Additionally, they are used as reaction vessels or source bottles during various chemical reactions in laboratories. The cleanroom packaging design of quartz source bottles ensures the purity of the raw materials and prevents contamination.
Eigenschaft Inhalt | Immobilienwerte |
---|---|
SiO2 | 99.99% |
Dichte | 2,2×10³ kg/cm³ |
Härte | 5,5 - 6,5 Mohs'sche Skala 570 KHN 100 |
Zugfestigkeit | 4,8×10⁷ Pa (N/mm2) (7000 psi) |
Druckfestigkeit | >1,1×10⁹ Pa (160.000 psi) |
Wärmeausdehnungskoeffizient | 5,5×10-⁷ cm/cm-°C (20°C-320°C) |
Wärmeleitfähigkeit | 1,4 W/m-°C |
Spezifische Wärme | 670 J/kg-°C |
Erweichungspunkt | 1730°C (3146°F) |
Glühpunkt | 1210°C (2210°F) |
Dehnungspunkt | 1120°C (2048°F) |
Arbeitstemperatur | 1200°C (2192°F) |
Elektrischer spezifischer Widerstand | 7×10⁷ Ohm cm (350°C) |
Größe | Kundenspezifisch |
Logo | Kundenspezifisches Logo akzeptieren |
High Purity
Quartz source bottles are made from high-purity quartz glass, ensuring the chemical stability and purity of the container, thus preventing any reactions with or contamination of the stored materials.
Hochtemperaturbeständigkeit
Quartz glass possesses excellent high-temperature resistance, enabling long-term use at elevated temperatures without deformation or damage.
Corrosion Resistance
Quartz glass demonstrates good corrosion resistance to a wide variety of chemical reagents, making it suitable for storing and transferring various corrosive substances.
Easy Cleaning
The smooth surface of quartz glass prevents dirt from adhering, facilitating easy cleaning and maintenance.
Anwendungsszenario
Halbleiterindustrie
Semiconductor Material and Device Production: Quartz source bottles are indispensable materials in semiconductor production, frequently used in crucibles, boats, furnace core tubes, and bell jars for growing germanium and silicon single crystals. These components need to withstand high temperatures and corrosive environments, making the high-temperature and corrosion resistance of quartz source bottles ideal.
Cleaning and Diffusion: In semiconductor cleaning and diffusion processes, quartz source bottles are also commonly used as cleaning tanks and diffusion tubes to ensure process stability and precision.
Optical Technology
Optical Instruments and Equipment: Due to their excellent optical properties, quartz source bottles are widely used in making prisms and lenses for optical instruments such as ultrasonic delay lines in radar, infrared tracking and ranging equipment, infrared cameras, communication devices, spectrographs, and spectrophotometers.
Large Astronomical Telescopes: Quartz glass, due to its high transparency and low thermal expansion coefficient, is also used in manufacturing reflective windows for large astronomical telescopes to enhance the telescope’s observation precision and stability.
Labor und Forschung
Laboratory Containers: Due to their chemical stability and high-temperature resistance, quartz source bottles are often used as laboratory containers, such as for collecting and processing chemical waste.
Research Equipment: In research settings, quartz source bottles are also used to manufacture various precision components for research equipment to meet the needs of scientific studies.
Quartz source bottles have a silicon dioxide (SiO2) content of up to 99.995%, which eliminates risks associated with glass inhomogeneity (including layering) and the leaching of problematic metal ions.
Quartz source bottles exhibit extremely high stability at high temperatures and do not easily deform. Their low thermal expansion coefficient and excellent thermal shock resistance allow them to maintain their shape and structural integrity under drastic temperature changes.
Ensuring Experimental Accuracy: Quartz source bottles can remain stable at temperatures up to 1100°C. This means that in high-temperature experiments, quartz source bottles serve as reliable containers, ensuring that the accuracy of the experimental results is not compromised by thermal deformation or decomposition of the container.
Enhancing Experimental Safety: Quartz source bottles possess outstanding thermal shock resistance, meaning they are not prone to cracking even under rapid temperature changes. This significantly reduces safety risks in high-temperature experiments, protecting laboratory personnel and equipment.
Häufig gestellte Fragen
Quarzglas ist ein hartes und sprödes Material mit ausgezeichneten physikalischen und chemischen Eigenschaften, extrem hoher mechanischer Härte, guter elektrischer Isolierung, hoher Temperatur- und Korrosionsbeständigkeit, geringer und stabiler Verzögerungsleistung, guter Lichtdurchlässigkeit usw. Es findet breite Anwendung in der Halbleiterindustrie, Optik, Elektrizität, Chemie, Luft- und Raumfahrt, Automobilindustrie und anderen Bereichen. Harte und spröde Werkstoffe sind schwer zu bearbeiten, und in vielen Bereichen werden dringend Schneidverfahren mit geringem Kanteneinbruch, geringem Materialverlust, geringer Querschnittsrauheit und einem großen Schnittdickenbereich benötigt. Das traditionelle Schneidverfahren für Quarzglas ist das mechanische Schneiden, d. h. das Scheibenschneiden. Zu den nicht-traditionellen Schneidverfahren gehören Wasserstrahlschneiden, elektrochemisches Drahterodieren, kontinuierliches Laserschneiden usw. Das mechanische Schneiden ist kostengünstig, aber der Kontakt zwischen der Scheibe und dem Material verursacht einen hohen Werkzeugverschleiß, und das Material wird leicht durch das Werkzeug verschmutzt. Quarzglas neigt zu Kanteneinbrüchen, Mikrorissen und Eigenspannungen, was die Festigkeit und Leistung des Materials beeinträchtigt! Das Schneiden von Kurven ist schwierig und erfordert Nachbearbeitungen wie Schleifen und Polieren. Das Laserschneiden kommt nicht direkt mit dem Material in Berührung, hat keine Kontaktspannungen und kann komplexe Kurvenschnitte durchführen. Der Pikosekundenlaser hat die Vorteile eines kleinen Punktdurchmessers, einer hohen Präzision, einer kurzen Einwirkungszeit auf das Material und eines kleinen Einwirkungsbereichs und eignet sich für die Bearbeitung von harten und spröden Materialien.
。