Quartz glass plates are a high-transparency, high-temperature-resistant, and chemically stable material widely utilized in various fields, including optics, semiconductors, and fiber optic communications. Their low thermal expansion coefficient, excellent electrical insulation properties, and radiation resistance make them an indispensable material in high-tech applications.
Eigenschaft Inhalt | Immobilienwerte |
---|---|
SiO2 | 99.99% |
Dichte | 2,2×10³ kg/cm³ |
Härte | 5,5 - 6,5 Mohs'sche Skala 570 KHN 100 |
Zugfestigkeit | 4,8×10⁷ Pa (N/mm2) (7000 psi) |
Druckfestigkeit | >1,1×10⁹ Pa (160.000 psi) |
Wärmeausdehnungskoeffizient | 5,5×10-⁷ cm/cm-°C (20°C-320°C) |
Wärmeleitfähigkeit | 1,4 W/m-°C |
Spezifische Wärme | 670 J/kg-°C |
Erweichungspunkt | 1730°C (3146°F) |
Glühpunkt | 1210°C (2210°F) |
Dehnungspunkt | 1120°C (2048°F) |
Arbeitstemperatur | 1200°C (2192°F) |
Elektrischer spezifischer Widerstand | 7×10⁷ Ohm cm (350°C) |
Größe | Kundenspezifisch |
Logo | Kundenspezifisches Logo akzeptieren |
High Transparency
Quartz glass plates exhibit extremely high transparency, particularly across the ultraviolet to infrared spectral range. This makes them invaluable in optical applications, such as the fabrication of lenses, optical fibers, and optical windows.
Hochtemperaturbeständigkeit
Quartz glass plates can withstand exceptionally high temperatures, with continuous operating temperatures up to 1100°C and short-term tolerance up to 1250°C. This makes them ideal for high-temperature environments, such as in semiconductor manufacturing and as viewports in high-temperature furnaces.
Chemical Stability
Quartz glass plates have excellent resistance to most chemicals, particularly acids. With the exception of hydrofluoric acid, they demonstrate near-inertness to almost all acids, making them highly sought after in chemical laboratories and industrial applications.
Low Thermal Expansion Coefficient
Quartz glass plates have a low thermal expansion coefficient, meaning their dimensions change very little with temperature variations. This is crucial for precision instruments and high-temperature equipment that require precise dimensional control, ensuring stability and reliability under fluctuating temperatures.
Anwendungsszenario
Halbleiterindustrie
Quartz glass plates play a crucial role in the semiconductor supply chain, widely used in single-crystal silicon production and wafer manufacturing processes. Various quartz components and instruments are essential in cleaning, oxidation, photolithography, etching, and diffusion steps. For example, quartz crucibles are indispensable containers in the semiconductor industry, while high-purity quartz products such as quartz glass plates, quartz rings, and quartz boats are also used in these processes.
Fiber Optic Communication Industry
Quartz glass is the primary raw material in optical fiber manufacturing, with high-purity quartz glass accounting for more than 95% of the composition of optical fiber preforms. Significant amounts of quartz glass materials, such as holding rods and quartz cups, are consumed during optical fiber production processes like preform fabrication and fiber drawing.
Optics Field
Due to its excellent optical properties, quartz glass plates are used in the manufacturing of high-end optical lenses, prisms, and as substrate materials for TFT-LCD high-definition displays and IC photomasks. They ensure light transmission within the 185-3500 micrometer wavelength range, providing a clear visual experience.
Aerospace Field
Quartz glass plates, with their low density, high compressive strength, and good optical performance, are widely used in the aerospace sector for satellites and spacecraft. Radiation-resistant quartz glass can effectively control the attitude of spacecraft, and high-strength, radiation-resistant glass cover slips provide effective protection for the solar cell energy systems of spacecraft.
In semiconductor manufacturing, quartz glass plates are used to fabricate various components and containers, including quartz crucibles, quartz boats, and quartz rings. These are essential in processes such as cleaning, oxidation, photolithography, etching, and diffusion.
Quartz glass plates exhibit extremely high chemical stability, showing inertness to nearly all acids, with the exception of hydrofluoric acid. This property makes them highly sought after in chemical laboratories and industrial applications.
A low thermal expansion coefficient means that quartz glass plates exhibit minimal dimensional changes with temperature variations. This is crucial for precision instruments and high-temperature equipment that require precise dimensional control, ensuring stability and reliability even under fluctuating temperatures.
Häufig gestellte Fragen
Quarzglas ist ein hartes und sprödes Material mit ausgezeichneten physikalischen und chemischen Eigenschaften, extrem hoher mechanischer Härte, guter elektrischer Isolierung, hoher Temperatur- und Korrosionsbeständigkeit, geringer und stabiler Verzögerungsleistung, guter Lichtdurchlässigkeit usw. Es findet breite Anwendung in der Halbleiterindustrie, Optik, Elektrizität, Chemie, Luft- und Raumfahrt, Automobilindustrie und anderen Bereichen. Harte und spröde Werkstoffe sind schwer zu bearbeiten, und in vielen Bereichen werden dringend Schneidverfahren mit geringem Kanteneinbruch, geringem Materialverlust, geringer Querschnittsrauheit und einem großen Schnittdickenbereich benötigt. Das traditionelle Schneidverfahren für Quarzglas ist das mechanische Schneiden, d. h. das Scheibenschneiden. Zu den nicht-traditionellen Schneidverfahren gehören Wasserstrahlschneiden, elektrochemisches Drahterodieren, kontinuierliches Laserschneiden usw. Das mechanische Schneiden ist kostengünstig, aber der Kontakt zwischen der Scheibe und dem Material verursacht einen hohen Werkzeugverschleiß, und das Material wird leicht durch das Werkzeug verschmutzt. Quarzglas neigt zu Kanteneinbrüchen, Mikrorissen und Eigenspannungen, was die Festigkeit und Leistung des Materials beeinträchtigt! Das Schneiden von Kurven ist schwierig und erfordert Nachbearbeitungen wie Schleifen und Polieren. Das Laserschneiden kommt nicht direkt mit dem Material in Berührung, hat keine Kontaktspannungen und kann komplexe Kurvenschnitte durchführen. Der Pikosekundenlaser hat die Vorteile eines kleinen Punktdurchmessers, einer hohen Präzision, einer kurzen Einwirkungszeit auf das Material und eines kleinen Einwirkungsbereichs und eignet sich für die Bearbeitung von harten und spröden Materialien.
。